Continuous synthesis of hollow silver–palladium nanoparticles for catalytic applications
نویسندگان
چکیده
منابع مشابه
Controlled synthesis of novel cyanopropyl polysilsesquioxane hollow spheres loaded with highly dispersed Au nanoparticles for catalytic applications.
The design and synthesis of novel cyanopropyl polysilsesquioxane hollow spheres lead to production of a highly active and stable catalyst in the reduction of 4-nitrophenol catalyzed by Au nanoparticles.
متن کاملNanoparticles of ZrPO4 for green catalytic applications.
Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure).
متن کاملcomparison of catalytic activity of heteropoly compounds in the synthesis of bis(indolyl)alkanes.
heteropoly acids (hpa) and their salts have advantages as catalysts which make them both economically and environmentally attractive, strong br?nsted acidity, exhibiting fast reversible multi-electron redox transformations under rather mild conditions, very high solubility in polar solvents, fairly high thermal stability in the solid states, and efficient oxidizing ability, so that they are imp...
15 صفحه اولMussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications.
We report a facile green approach to the synthesis of silver nanoparticles (Ag NPs) on the surface of graphene oxide nanosheets functionalized with mussel-inspired dopamine (GO-Dopa) without additional reductants or stabilizers at room temperature. The resulting hybrid Ag/GO-Dopa exhibits good dispersity and excellent catalytic activity in the reduction of nitroarenes.
متن کاملSynthesis of CuO Nanoparticles and Study on their Catalytic Properties
In this research, CuO spherical-like nanoparticles were synthesized using the planetary ball mill method. The structure, particle size and morphology of the resulting CuO nanoparticles were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and SAXS (small-angle X-ray scattering) methods. The results of this investigation showed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Faraday Discussions
سال: 2018
ISSN: 1359-6640,1364-5498
DOI: 10.1039/c8fd00001h